LUNAR DRILLING NLSI Forum, ARC July 20-22, 2010 Speaker: Kris Zacny, PhD **Co-Authors:** G. Paulsen M. Szczesiak, C. Santoro, J. Craft **HONEYBEE** ROBOTICS Spacecraft Mechanisms Corporation Visit: www.HoneybeeRobotics.com ### **Short History Lunar Drilling** #### **Apollo Lunar Surface Drill (1971, 1972)** - ~500 Watt, Battery Powered (!!!) and Human Operated - ~ 2.4 m depth - A15: The drill was hard to remove from the hole ... it took both astronauts working at the limit of their combined strengths to pull up the drill ...this caused a severe shoulder sprain in Scott. - 3rd Law of Robotics: A robot must protect its own existence... http://www.hq.nasa.gov/alsi/tools/judy20.jpg #### Luna 16 (1970), 20 (1972), 24 (1976) - Vacuum, +100 C to -170 C - 1st Autonomous Drill - 5727 kg Platforms - Depths of 35 cm, 25cm, & 2 m ### "Lunar" Lessons Learned - 1. Drilling is not that simple - 2. Drilling on another body is tough even when humans are doing the job - 3. Large spacecrafts or human operation are currently things of the past (at least for now) - 4. AND....There is no substitute for testing...in relevant environment – "test early and often"! # Subsurface exploration approaches QNEYBEEROBOTICS Spacecraft Mechanisms Corporation #### 1. Bring Sensor downhole #### Example: NS/IR drill - Non-contact or contact sensor inside a drill - NS- water wt%, IR-mineralogy - 2. Bring Vapors to an Instrument **Example: Sniffer** - Captures cuttings in a drill tip - Sample heater, vapors travel to a MS - Bring Sample to an Instrument Example: Auger or Bit Sampler - Acquires locally mixed powder sample - Bring samples on auger flutes - 4. Bring a Core to an Instrument - **Example: Coring drill** - Acquires core and brings it to a processing unit. ## **Mission Complexity vs. Payoff** ### **Honeybee Drills** - Since 1990s we built and tested all four different drill types. - We also built flight systems: MER RAT, Phoenix Scoop, Dust Removal Tool on MSL - What we learned: when developing a system, you need to outline a path to flight from start. # Previous Honeybee 1m class Drills HONEYBEE ROBOTICS Spacecraft Mechanisms Corporation | | Mars Deep Drill | MARTE | DAME | SATM | |-------------------|-----------------------------------|---|---|---| | TRL | 5/6 | 5/6 Core (1"x 10") | 5
Cuttings | 6 0 Lee outtings at | | Sample
Type | Cuttings | Core (1"x 10") | Cuttings | 0.1cc cuttings at the bit | | Focus | Robotic drill string connections. | Robotic string connections, core break-off, capture and ejection. | Drilling Autonomy
(Hands-off drilling,
fault recognition and
mediation etc). | Mass: 10kg. Stroke 1.2m. 25 Whr @ 1 cm/min in 40 MPa material | | Instrume ntations | Neutron and IR Spectrometer | | | Sample acquisition at the bit. | | Testing | 8.3m in Arizona | >8m California and
Spain | >3m Arctic (2004-
2007) | Lab | | Location | At LANL | At ARC | At ARC | At JPL 7 | ### **Lessons learned** #### **Lessons are expensive** - **Drills are too complex** - Honeybee Solution: Down hole instrumentations - Core handling is a big issue - Problems: - Breaking a core in all formations: Soil, Icy-soil, Ice, Rock - Retaining a core: Not many systems have 100% core recovery! - Ejecting a core: Can't rely on gravity/vibration, core could freeze - Ok, so you have a core and now what? Crush it? Slice it? - Honeybee Solution: Capture cuttings using sampling auger #### **Drills required too much Weight on Bit** - Problems: - Had to assume boom deployable system - Maximum WOB <100N - **Honeybee Solution** - Rotary-Percussive or Sonic systems (vacuum rated) Shear & Capture Core **Patented** ### Recap: - 1. Downhole instruments - 2. Auger Sampling - 3. Percussive or Sonic drilling # Downhole Neutron Spectrometer and IR HONEYBEE ROBOTICS Spacecraft Mechanisms Corporation #### **Neutron Spectrometer** - Used to ground truth areas identified by surface NS as H₂ rich - Dual sensors and electronics: 0.5kg and 2.2W (R. Elphic) - Possibility for borehole sampler - TRL 5/6 #### **Infra Red Spectrometer** - Mineralogy - Emissivity, thermal inertia - TRL 3 R. Elphic NS on ARC K10 mini # Drill With a Laser Induced Breakdown Specific Specific Drivers of Space of Mechanisms Corporation - In situ, 3D subsurface elemental composition - Extremely robust. LIBS developed for mining customers (heat, vibration, dust). - TRL5 system is being designed (SBIR-MSFC) - Telescopic design allows deep penetration without extra mass - Pressurant Helium used for removing cuttings (reduces drilling power, energy, heat) #### **Accuracy: NU-LHT-2M** | | Actual
wt% | LIBS
wt% | Deviation (% relative) | |--------------------------------|---------------|-------------|------------------------| | Fe ₂ O ₃ | 4.16 | 3.61 | -13% | | TiO ₂ | 0.41 | 0.47 | +14% | #### LIBS Spectra: JSC-1a ### **Current Sampling Drill Developments** | | Sonic | CRUX | IceBreaker | |------------------|---|--|---| | TRL | 5 | | 5 (6 in 07/2010) | | Sample Type | Cuttings | Cuttings | Cuttings | | Focus | Vacuum rated Sonic drilling technology. Gas assisted drilling. Bit Preload < 100N | Percussive drilling
technology
Bit Preload <100N | Vacuum rated percussive
drilling technology
Bit Preload <100N | | Instrumentations | Bit Temperature | Bit Temperature
Downhole Camera | Bit Temperature
Downhole Camera | | Testing | 1m in Vacuum Chamber | >2m Arctic (2009, 2010) | 1m in Vacuum Chamber Antarctic, 2010 | | Location | At Honeybee | At ARC | At Honeybee 12 | ## **Auger Sampler: How it Works** Tapered auger. Deep flutes at the bottom – shallow flutes on top. Drill 1st 2in bite Pull out. Image cuttings laying on auger flutes, sub sample. Drill 2nd 2in bite Pull out. Image cuttings laying on auger flutes, sub sample. Drill 3rd 2in bite Imager/Sensor Heat Pipe moves excess heat from the bit to the lander ## **Auger Sampler** - Very simple operation: - Drill short bites e.g. 4 inches - If drill gets stuck at 20in, you still have 5 samples! - Cuttings can be imaged and analyzed with non-contact instruments while on auger flutes - Only cuttings of interest can be moved into an instrument and analyzed, the rest can be discarded (brushed off) - Stratigraphy is preserved cuttings on top come from top part of the hole - Very robust system: - If cuttings get stuck on flutes, they can be brushed off - System under development for Mars IceBreaker 1-2m drill mission will be tested in Antarctic in Dec 2010. Cuttings on auger flutes during Mauna Kea tests # **Test Early and Often** ### **Testing in relevant environment!** #### >70 permutations Ambient Temp. **Relative Humidity** Temp. 2 (14" from top, 1" deep) **Temp. 3** (14" from top, 0.5" deep) Chamber Pressure Temp. 4 (24" from top, 1" deep) Temp. 5 (24" from top, 0.5" deep) | No* | P, torr | Sample | Sample | WOB, N | RPM | Gas? | RP/RS/R | |--|---|--|---|--|--|---------------------------------------|--| | 1 2 | 760
760 | Indiana LS
Indiana LS | Room T | <100 | 100 | N | R | | 3 | 760 | Indiana LS | Room T | <100 | 100 | N | RS | | 4 | 760-3 | Indiana LS | Room T | <100 | 100 | N | R | | 5 | 760-3
760-3 | Indiana LS | Room T | <100 | 100 | N
N | RP
RS | | 7 | 760-3 | Indiana LS
Indiana LS | Room T | <100 | 100 | N | R | | 80 | 760-3 | Indiana LS | Room T | <100 | 100 | N | RP | | 9 | 760-3 | Indiana LS | Room T | <100 | 100 | N | RS | | 10 | 6.4 | Indiana LS
Indiana LS | Room T | <100
<100 | 100 | N
N | R | | 12 | 6.4 | Indiana LS | Room T | <100 | 100 | N | RP | | 13 | 3 | Indiana LS | Room T | <100 | 100 | N | RP | | 14 | 6.4 | Indiana LS | Room T | <100 | 100 | N | RS
RS | | 15 | 6.4 | Indiana LS | Room T | <100 | 100 | N N | R | | 17 | 3 | Ice | -20 | <100 | 100 | N | R | | 18 | 6.4 | Ice | -20 | <100 | 100 | N | RP | | 19 | 8.4 | lce
lce | -20 | <100 | 100 | N
N | RP
RS | | 21 | 3 | lce | -20 | <100 | 100 | N | RS | | 22 | 6.4 | Ice + 2% Phr | -20 | <100 | 100 | N | R | | 23 | 3
6.4 | Ice + 2% Phr
Ice + 2% Phr | -20
-20 | <100 | 100 | N | R | | 25 | 3 | Ice + 2% Phr | -20 | <100 | 100 | N | RP | | 26 | 6.4 | Ice + 2% Phr | -20 | <100 | 100 | N | RS | | 27 | 3 | Ice + 2% Phr
JSC-1a+12wt% | -20 | <100 | 100 | N | RS
R | | 29 | 6.4 | JSC-1a+12wt% | -20 | <100 | 100 | N | R | | 30 | 3 | JSC-1a+12wt% | -20 | <100 | 100 | N | RP | | 31 | 6.4 | JSC-1a+12wt%
JSC-1a+12wt% | -20
-20 | <100 | 100 | N | RP
RS | | 32 | 6.4 | JSC-1a+12wt%
JSC-1a+12wt% | -20 | <100 | 100 | N | RS
RS | | No* | P, torr | Sample | Sample | WOB, N | RPM | Gas? | RP/RS/R | | 34 | 3 | JSC-1a+12wt%
JSC-1a+12wt% | -40
-200 | <100
<100 | 100 | N
N | R | | 36 | 3 | JSC-1a+12wt% | -40 | <100 | 100 | N | RP. | | 30 | 3. | 13/0-14+15ML16 | -40 | <100 | 100 | TW. | POP. | | 37 | 3 | JSC-1a+12wt% | -200 | <100 | 100 | N | RP | | 37
38 | 3 | JSC-1a+12wt%
JSC-1a+12wt% | -200
-40 | <100
<100 | 100 | N
N | RP
RS | | 37 | 3 | JSC-1a+12wt% | -200 | <100 | 100 | N | RP | | 37
38
39
40
41 | 3
3
6.4
6.4 | JSC-1a+12wt%
JSC-1a+12wt%
JSC-1a+12wt%
Sat DI Breccia
Sat DI Breccia | -200
-40
-200
-20
-20 | <100
<100
<100
<100
<100 | 100
100
100
100 | N
N
N | RP
RS
RS
R | | 37
38
39
40
41
42 | 3
3
3
64
64
64 | JSC-1a+12wt%
JSC-1a+12wt%
JSC-1a+12wt%
Sat DI Breccia
Sat DI Breccia
Sat DI Breccia | -200
-40
-200
-20
-20
-20
-20 | <100
<100
<100
<100
<100
<100 | 100
100
100
100
100
100 | N
N
N
N | RP
RS
RS
R
RP
RS | | 37
38
39
40
41
42
43 | 3
3
3
64
64
64
64 | JSC-1a+12wt%
JSC-1a+12wt%
JSC-1a+12wt%
Sat DI Breccia
Sat DI Breccia
Sat DI Breccia
MMS saturated | -200
-40
-200
-20
-20
-20
-20
-20 | <100
<100
<100
<100
<100
<100
<100 | 100
100
100
100
100
100 | N
N
N
N
N | RP
RS
RS
R
RP
RS | | 37
38
39
40
41
42
43
44
45 | 3
3
64
64
64
64
64
64 | JSC-1a+12wt% JSC-1a+12wt% JSC-1a+12wt% JSC-1a+12wt% Sat DI Breccia Sat DI Breccia Sat DI Breccia MMS saturated MMS saturated MMS saturated MMS saturated | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20 | <100
<100
<100
<100
<100
<100
<100
<100 | 100
100
100
100
100
100
100
100
100 | N
N
N
N
N
N | RP
RS
RS
R
RP
RS
RP
RS | | 37
38
39
40
41
42
43
44
45 | 3
3
3
64
64
64
64
64
64
64 | JSC-1a+12wt% JSC-1a+12wt% JSC-1a+12wt% Sat Di Breccia Sat Di Breccia Sat Di Breccia MMS saturated MMS saturated MMS saturated Saddleback B | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N
N
N
N
N
N
N | RP
RS
RS
R
RP
RS
R
RP
RS | | 37
38
39
40
41
42
43
44
45 | 3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760 | JSC-1a+12wt% JSC-1a+12wt% JSC-1a+12wt% Sat DI Breccia Sat Di Breccia Sat Di Breccia MMS saturated MMS saturated MMS saturated Saddleback B Berea SS | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100 | N
N
N
N
N
N | RP
RS
RS
R
RP
RS
RP
RS | | 37
38
39
40
41
42
43
44
45
46
47
48
49 | 3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760 | JSC-1a+12vt% JSC-1a+12vt% JSC-1a+12vt% Sat DI Breccia Sat DI Breccia Sat DI Breccia MMS saturated MMS saturated Saddleback B Barea SS Indiana LS Saddleback B | -200 -40 -200 -20 -20 -20 -20 -20 -20 -20 -20 - | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP
RS
RS
R
RP
RS
R
RP
RS
R
RP
RS
R
RP
RS | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50 | 3
3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760
760 | JSC-1a+12vt% JSC-1a+12vt% JSC-1a+2vt% USC-1a+12vt% Sat Di Breccia Sat Di Breccia Sat Di Breccia Sat Di Breccia MMS saturated MMS saturated MMS saturated MMS saturated Saddleback B Berea SS Indiana LS Saddleback B Berea SS | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP
RS
RS
R RP
RS
R RP
RS
R RP
RS
R RP
RP
RP | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 | 3
3
3
64
64
64
64
64
64
760
760
760
760
760 | JSC-1a+12vt% JSC-1a+12vt% JSC-1a+12vt% Sat Di Breccia Sat Di Breccia Sat Di Breccia Sat Di Breccia MMS saturated MMS saturated MMS saturated Saddleback B Berea SS Indiana LS Saddleback B Berea SS Indiana LS | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP
RS
RS
RS
RP
RS
RP
RS
RP
RS
RP
RS
RP
RS
RP
RS
RP
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS
RS | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50 | 3
3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760
760 | JSC-1a+12vt% JSC-1a+12vt% JSC-1a+2vt% USC-1a+12vt% Sat Di Breccia Sat Di Breccia Sat Di Breccia Sat Di Breccia MMS saturated MMS saturated MMS saturated MMS saturated Saddleback B Berea SS Indiana LS Saddleback B Berea SS | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP
RS
RS
R RP
RS
R RP
RS
R RP
RS
R R RP
RP | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54 | 3
3
3
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760 | JSC 1a+124t% JSC 1a+124t% JSC 1a+124t% Sat DI Breccia MMS saturated MMS saturated MMS saturated Saddleback B Berea SS Indiana LS | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | | | 37
38
39
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 | 3
3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760 | JSC 1a+12vt1% JSC 1a+12vt1% JSC 1a+12vt1% Sat DI Breccia Sat DI Breccia Sat DI Breccia Sat DI Breccia MMS saturated MMS saturated MMS saturated Saddleback B Berea SS Indiana LS Saddleback B Berea SS Indiana LS Saddleback B Berea SS Indiana LS L | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP RS | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
55
56
56 | 3
3
3
64
64
64
64
64
64
760
760
760
760
760
760
760
760
760
760 | JSC1a+12wt% JSC1a+12wt% JSC1a+12wt% Sat DI Breccia MMS saturated MMS saturated MMS saturated Berea SS Indiana LS Saddleback B Berea SS Indiana LS Saddleback B Lee JSC1a+12wt% | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | RP RS | | 37 38 39 44 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 | 3
3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760
760 | JSC-1a+2v+W
JSC-1a+12v+W
JSC-1a+12v+W
Sat. DI Brecia
Sat. Di Brecia
Sat. Di Brecia
MMS autorated
MMS autorated
MMS autorated
Saddleback B
Berea SS
Indiana LS
Saddleback B | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | S 2 2 2 2 3 2 4 4 4 2 2 2 2 3 3 4 2 2 2 2 | | 37 38 39 44 4 4 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 | 3
3
3
64
64
64
64
64
64
66
760
760
760
760
760
760
760
760
760 | JSC-1a+12wt% | -200
-40
-200
-20
-20
-20
-20
-20
-20
-20
-20
- | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 2000 mm | | 37
38
39
41
42
43
44
45
46
47
48
49
50
51
51
52
63
53
54
56
56
57
58
58
58
58
58
58
58
58
58
58
58
58
58 | 3
3
3
3
64
64
64
64
64
760
760
760
760
760
760
760
760
760
760 | JSC-1a+27wt% JSC-1a+12vt% | 200 - | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 37 38 39 41 42 43 44 45 46 47 48 49 50 51 56 56 57 58 59 60 65 62 | 3
3
3
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760 | JSC-1a+12wt% | -200 -40 -200 -20 -20 -20 -20 -20 -20 -20 -20 - | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | | 37 38 39 44 44 44 44 44 44 44 45 5 5 5 5 5 5 5 | 3
3
3
64
64
64
64
64
64
64
67
760
760
760
760
760
760
760
760
760 | JSC-1a+12wt% | 200 -200 -200 -200 -200 -200 -200 -200 | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 表为为中央表示的 中央 医医生生性 医克里氏 医多克斯氏 医多克斯氏 | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
54
55
56
56
56
56
56
56
56
56
56
56
56
56 | 3
3
3
3
3
3
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760
760 | JSC-1a+27w1% JSC-1a+12v1% | 200 - | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | | 37 38 39 44 44 44 44 44 45 46 47 48 49 55 15 13 15 45 55 56 77 58 58 56 15 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | 3
3
3
64
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760
760 | JSC-1a+27wt% JSC-1a+27wt% JSC-1a+2xt% JSC-1a+2xt% JSC-1a+12wt% JSC-1a+ | 200 200 200 200 200 200 200 200 200 200 | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 是 55 55 年 年 25 55 年 年 年 25 25 55 年 年 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 | | 37 38 39 44 44 44 44 45 46 47 48 48 55 16 16 16 16 16 16 16 16 16 16 16 16 16 | 3
3
3
64
64
64
64
64
68
64
68
760
760
760
760
760
760
760
760
760
760 | JSC-1a+12wt% | 200 - | <100 <100 <100 <100 <100 <100 <100 <100 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | 是 55 55 月 年 25 55 月 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 | | 37 88 89 44 44 44 44 44 44 44 44 44 44 44 44 44 | 3
3
3
64
64
64
64
64
68
64
68
760
760
760
760
760
760
760
760
760
760 | JSC-1a+12wt% | 200 - | 400
400
400
400
400
400
400
400
400
400 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | · 新 · · · · · · · · · · · · · · · · · · | | 37 38 39 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3
3
3
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760
760 | JSC-1a+27wt% JSC-1a+12wt% | 200 440 400 200 200 200 200 200 200 200 | 400
400
400
400
400
400
400
400
400
400 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | · 新 · · · · · · · · · · · · · · · · · · | | 37 38 39 4 4 4 2 43 44 45 65 55 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 77 77 72 73 | 3 3 3 6 4 6 4 6 4 6 4 6 4 6 5 4 6 5 4 6 5 4 6 5 4 6 5 4 6 5 4 6 5 4 6 5 6 5 | JSC-1a+12wt% JSC-1 | 2000 440 400 400 400 400 400 400 400 400 | 400
400
400
400
400
400
400
400
400
400 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | · 电电子电子 医克里氏 医克里氏 医克里氏 医克里氏 医克里氏 医克里氏 医克里氏 医克里氏 | | 37 38 39 4 4 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 58 56 56 58 58 58 57 77 72 | 3
3
3
6.4
6.4
6.4
6.4
6.4
6.4
760
760
760
760
760
760
760
760
760
760 | JSC-1a+12wt% JSC-1 | 200 440 420 200 200 200 200 200 200 200 | 400
400
400
400
400
400
400
400
400
400 | 100
100
100
100
100
100
100
100
100
100 | N N N N N N N N N N N N N N N N N N N | · · · · · · · · · · · · · · · · · · · | ## **Drilling in vacuum in Ice** - Drilling power --> heat --> latent heat --> sublimation - Volumetric expansion of water 150,000 times ### References - Y. Bar-Cohen and K. Zacny (Eds.), - "Drilling in Extreme Environments Penetration and Sampling on Earth and Other Planets," - Chapter 1: Introduction - Chapter 2: Principles of Drilling and Excavation - Chapter 3: Ground Drilling and Excavation - Chapter 4: Ice Drilling and Coring - Chapter 5: Sea Floor drilling - Chapter 6: Extraterrestrial Drilling and Excavation - Over 50 scoops, drills, penetrometers, moles etc. - Chapter 7: Planetary sample acquisition, handling and processing - Chapter 8: Instruments for In-Situ Sample Analysis - Chapter 9: Contamination and Planetary protection Zacny et al., **Drilling Systems for Extraterrestrial Subsurface Exploration**, ASTROBIOLOGY Volume 8, Number 3, 2008 (42 pages) >30 other extraterrestrial drilling papers ### **Acknowledgements** #### NASA - Programs: SBIR, PIDDP, ASTEP, ASTID, MIDP - COTRs/Pls: - Chris McKay, ARC - Doug Rickman, MSFC - Lori Shiraishi, JPL - Kristo Krichbaum, JPL - Brian Glass, ARC - Rick Elphic, ARC - Carol Stoker, ARC - Bill Smythe, JPL ### NOW YOU CAN "DRILL" ME WITH QUESTIONS